

Sustainable production of Cellulose-based products and additives to be used in SMEs and rural areas Funded from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101007733.

#### I am CELISE

# Integrated biorefinery for the valorization of Colombian cocoa wastes

Konstantinos Triantafyllidis Department of Chemistry, Aristotle University of Thessaloniki <u>ktrianta@chem.auth.gr</u>

> CELISE Symposium Warsaw, Tuesday, 25 July 2023



#### Integrated Biorefinery at AUTH – Valorization of "whole biomass"





#### Cocoa bean shells

l am CELISE Samples provided by Universidad Cooperativa de Colombia (Prof. F. Colmenares) and Prof. J.C Colmenares (Poland)





l am CELISE

## Integrated Biorefinery of cocoa bean shell wastes



# Extractives, fractionation, pyrolysis





#### Mechanical pretreatment





l am CELISE

# Chemical composition of initial samples

| Sample                | CCN-51 | TCN-01 | ICS-95 |
|-----------------------|--------|--------|--------|
| Glucan                | 16.9   | 16.6   | 15.9   |
| Xylan                 | 2.9    | 4.1    | 0.0    |
| Galactan              | 8.5    | 10.1   | 11.1   |
| Arabinan              | 0.0    | 0.0    | 0.0    |
| Mannan                | 0.0    | 0.0    | 0.0    |
| Acetyl units          | 0.6    | 0.8    | 1.7    |
| Acid insoluble lignin | 38.2   | 44.7   | 36.4   |
| Acid soluble lignin   | 3.6    | 4.4    | 3.6    |
| Ash                   | 8.5    | 9.5    | 8.6    |
| Total                 | 79     | 90     | 77     |

Analysis was performed on as-received samples, containing extractives

• Low mass balance is attributed to the high protein content (to be determined)



# Chemical composition of extractives-free biomass

| l am             |              | Extractives in   | Extractives in | Sample                | CCN-51 | <b>TCN-01</b> | ICS-95 |   |
|------------------|--------------|------------------|----------------|-----------------------|--------|---------------|--------|---|
|                  |              | H <sub>2</sub> O | EtOH           | Glucan                | 27.1   | 24.2          | 29.0   |   |
| 10               | CCN-51       | 20.9%            | 23.0%          | Xylan                 | 6.1    | 4.7           | 7.3    |   |
| 10               |              | 29.978           | 23.076         | Galactan              | 12.5   | 8.5           | 15.2   |   |
| Con Soll         |              |                  |                | Arabinan              | 0.0    | 0.0           | 0.0    |   |
| and the          | TCS-01       | E1 10/           | 20.2%          | Mannan                | 0.0    | 0.0           | 0.0    |   |
| 185              | 1 187        | 51.1% 20.2%      | Acetyl units   | 1.9                   | 0.7    | 1.8           |        |   |
|                  |              |                  |                | Acid insoluble lignin | 34.1   | 39.4          | 35.5   |   |
|                  |              |                  |                | Acid soluble lignin   | 2.3    | 2.6           | 2.3    |   |
| fifthe statement | [CS-95       | 39.2%            | 16.3%          | Ash                   | 2.1    | 4.9           | 2.9    |   |
| - toget          | . Starting . |                  |                | Total                 | 86     | 85            | 94     |   |
|                  |              |                  |                |                       |        |               |        |   |
| For Filz         |              |                  |                |                       |        |               |        | ĺ |

# Physicochemical properties of initial samples





### Water soluble extractives recovery and analysis

l am CELISE





# Ethanol soluble extractives recovery and analysis

l am CELISE



Ethanol soluble extractives are mainly fatty acids/esters (C<sub>16</sub>-C<sub>19</sub>), sterols and tocopherols



## Batch mode isolation of extractives





#### Particle size distribution (DLS) of water extractives suspensions

l am CELISE



 Stable colloidal suspensions recovered by batch water-soluble extractives isolation, possibly of fibrous nature (to be characterized further)



# Characterization of extractives-free biomass (batch)

l am CELISE



| Sample                | CCN-51 | TCN-01 | ICS-95 |
|-----------------------|--------|--------|--------|
| Glucan                | 19.9   | 15.4   | 18.4   |
| Xylan                 | 5.9    | 6.4    | 5.9    |
| Arabinan              | 12.6   | 12.8   | 12.7   |
| Galactan              | 0.0    | 0.0    | 0.0    |
| Mannan                | 0.0    | 0.0    | 0.0    |
| Acetyl units          | 1.8    | 0.8    | 1.3    |
| Acid insoluble lignin | 54.4   | 57.0   | 42.0   |
| Acid soluble lignin   | 2.9    | 2.8    | 2.9    |
| Ash                   | 5.3    | 3.5    | 3.3    |
| Total                 | 103    | 99     | 87     |

- Glucan has been solubilized more effectively under batch treatment in water compared to Soxhlet
- Thus, lignin concentration is higher in batch treated samples 14



l am CELISE

# WP1 - Biomass pretreatment/fractionation

#### Task 1.2.: Novel and sustainable hydrolysis processes as pre-treatment

- Integrated biorefinery for the valorization of wastes
- Mild acid, autohydrolysis and organosolv pretreatment towards the isolation of biomass components (cellulose, hemicellulose, lignin)







#### Fractionation of cocoa wastes

Step 1: Hydrothermal/dilute acid pretreatment

l am CELISE

#### Liquid enriched in hemicellulose components Solvent: $H_2O$ (LSR=5) Biomass Temperature: 175 °C Time: 15 min Catalyst: 2.3 wt.% $H_2SO_4$ Cellulose and lignin Severity factor (logRo) Combined Severity factor (logR') (T-100) $R_0 = t \cdot exp$ logR'=logRo-|pH| Step 2



### Characterization of liquid streams





### Characterization of solid streams

l am CELISE





CCN-51



TCS-01

| Sample                | CCN-51 | TCN-01 |
|-----------------------|--------|--------|
| Glucan                | 26.1   | 16.1   |
| Xylan                 | 3.6    | 2.2    |
| Galactan              | 5.7    | 0.0    |
| Arabinan              | 0.0    | 3.3    |
| Mannan                | 0.0    | 0.0    |
| Acetyl units          | 0.3    | 0.0    |
| Acid insoluble lignin | 62.1   | 65     |
| Acid soluble lignin   | 1.7    | 1.1    |
| Ash                   | 0.7    | 1.4    |
| Total                 | 100    | 89     |

• Lignin and glucan enriched solids have been recovered



#### Fractionation of cocoa wastes

l am CELISE

#### Step 2: Organosolv pretreatment (lignin/glucan enriched biomass)





Solid from step 1

Solvent: EtOH/H<sub>2</sub>O=60/40 (LSR=10) Temperature: 175 °C Time: 1 h Catalyst: 2.9 wt.% H<sub>2</sub>SO<sub>4</sub>



Liquid enriched in (remaining) hemicellulose components



Lignin

Cellulose

# Analysis of organosolv liquids



- Liquids CCN-51 and TCS-01 derived from Organosolv of extractives-free and HLW/mild acid treated biomass
- Direct organosolv on extractives-free biomass (sample ICS-95) increases the hemicellulose components in liquid stream



l am CELISE

#### Catalytic hydrogenation of furfural: General reaction mechanism – possible routes



□ Dominant pathways/products depend on catalyst type, reaction parameters and solvent (acting or not as H-donor for inducing transfer hydrogenation)



# Characterization of lignins



#### 

#### 2D HSQC NMR of lignins: structure and composition of lignins



#### 2D HSQC NMR of lignins: structure and composition of lignins



-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110

120

130

-140

δ (13C)/ ppm



#### **EPOXY - LIGNIN COMPOSITES - LIGNIN DISPERSION**

#### I am CELISE



#### techanical stirring techanica

Kraft-epoxy composites



Mixture of OBs lignin with Epoxy resin pre-polymer and curing agent D-230, prior curing <u>NO</u> lignin particles

#### **Organosolv Lignin - Epoxy Composites**

| D-230_3%OBs | D-230_6%OBs | D-230_9%OBs |
|-------------|-------------|-------------|
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
| _           |             |             |
| 50 µm       | ou hu       | 50 µm       |
| GL4_3%OBs   | GL8_6%OBs   | GL12_9%OBs  |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
|             |             |             |
| 50 µm       | 50 µm       | 50 µm       |



Images of OBs-epoxy composites, obtained using Optical Microscopy

Completely transparent lignin-containing composites WITHOUT ANY SOLVENT or OTHER TREATMENT

> "Sub-Micro Organosolv Lignin as Bio-Based Epoxy Polymer Component: A Sustainable Curing Agent and Additive", Christina P. Pappa, Stylianos Torofias, Konstantinos S. Triantafyllidis <u>https://doi.org/10.1002/cssc.202300076</u>

#### 

# Characterization of cellulose "enriched" solids





| CCN-51 |
|--------|
| TCS-01 |
| ICS-95 |

| Sample                | CCN-51 | TCN-01 | ICS-95 |
|-----------------------|--------|--------|--------|
| Glucan                | 30.3   | 16.0   | 34.2   |
| Xylan                 | 3.3    | 2.3    | 3.2    |
| Galactan              | 4.5    | 2.7    | 0.0    |
| Arabinan              | 0.0    | 0.0    | 0.0    |
| Mannan                | 0.0    | 0.0    | 0.0    |
| Acetyl units          | 0.0    | 0.2    | 0.6    |
| Acid insoluble lignin | 19.2   | 36.7   | 56.1   |
| Acid soluble lignin   | 0.8    | 0.6    | 1.1    |
| Ash                   | 0.8    | 0.8    | 1.8    |
| Total                 | 52     | 59     | 97     |

Delignification by organosolv needs to be improved

### 

# Isolation of crystalline cellulose



25



l am

CELISE

## Nano/micro-cellulose production





l am

# WP1 (D1.3)

• AUTH is involved in the biomass/waste pyrolysis, towards value added products, using a fixed bed lab scale reactor and micro pilot unit





## Biochar via pyrolysis

l am CELISE





Thermal pyrolysis 500°C

CCN-51







**Bio-oil** 

**Bio-char** 



#### 

#### **Bio-oil composition**





#### Hydrodeoxygenation of lignin pyrolysis oil towards (alkyl)cyclohexanes







#### **AUTH main objective:**

**Development of non-sulfided catalyst for HDO of lignin** bio-oils towards aviation and shipping hydrocarbon fuels



This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101007130.



#### Conclusions

l am CELISE



- Cocoa bean shell wastes can support an integrated biorefinery towards a wide range of valueadded products (rest of cocoa production wastes, i.e. branches, can also be co-utilized)
- Sequential fractionation enhances the isolation of hemicellulose in the liquid stream which can be utilized towards the production of furans.
- Lignins isolated via organosolv pretreatment can be used as polymers reactive additive or can be converted to phenolic/aromatic bio-oils.
- Biochar is produced with various down-stream valorization possibilities (sorbent, catalyst, soil improver)
- Highly crystalline cellulose can be isolated via the sequential fractionation and be converted to nanocellulose via mechanical/chemical treatment or to value added chemical via bio/chemocatalytic processes
- More to follow on cocoa and coffee waste biorefining !



# Group members contributing to the project

l am CELISE





Konstantinos Triantafyllidis Chemist, Professor



Sofia Tsoumachidou Chemist, Postdoc



Antigoni Margellou Chemist, Postdoc



Stylianos Torofia Chemist, Researcher



Eleni Psochia Chemist, PhD student



Georgios lakovou Chemist, PhD student



**Dimitrios Gkiliopoulos** Chemist, Postdoc

**Dimitrios Giannakoudakis** Chemist, Postdoc



**Christina** Pappa Materials Engineer, PhD student



Kyriazis Rekos, Chemist, PhD student



Soultana loannidou Chemist, PhD student



Eleni Salonikidou Chemical Engineer, PhD student



#### Acknowledgments

l am CELISE





Marie Marie Skłodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE)



This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101007733